
Mau
August 2022

Kubernetes CRDs to automate the
underlay network at the Edge

p1nrojas

2

1

Virtual CPE joins virtual BNG
and ONT at the edge

Let’s meet at the edge cloud
The edge cloud becomes a very critical piece of the infrastructure equation

Edge
cloud Core Cloud

applications

Access

Users

Mobile

Wireline

Core

Cloud RAN central units
(CUs) and distributed units
(DUs) run as containers at
the edge

3

Applications are cloud-native.
Workloads get implemented based on CLOUD
principles as they migrate to the EDGE.

+

User-plane function
(UPF) is distributed to
the edge to meet
latency requirements Cloud gaming, streaming

media, connected
vehicles,
immersive experiences
(VR/AR), etc.

What makes this edge cloud so special

Edge

Compute and storage
• The edge is a local compute

environment that builds on a cloud-
native architecture (containers)

• Cloud management systems allow
applications to consume workloads
(compute & storage) resource on-
demand

• Kubernetes is the most popular
cloud management platform with
77% market share and growing

Networking
• Connect the servers hosting the

workloads in the edge and connect
to other edges and data centersCompute and storage

Networking

Key edge constraints & requirements
• Agility - Connections should be

established automatically with
compute and storage

• Efficiency - The edge is a space- and
cost-constrained environment

• Self-contained - The edge should
continue to run if the connection to
the other data centers is lost

• Performance - Apps have stringent
requirements in terms of latency and
reliability

Telco CNF Apps at the Edge
Main requirements for CNF Apps at the Edge

Unless you have the Underlay Network covered. You don’t
have an end-to-end solution

Expose underlay
network natively
inside Kubernetes

Small Footprint. No room for Management/Automation
platforms

Lack of resources to adapt orchestration tools to a separated
API framework (i.e. GitOps, Prometheus)

Multitenancy and granular security and control for
multivendor deployments

Day 2 changes to the Underlay Network, along with the CNF
App dynamic

Edge Network
Controller

Multus

Kubernetes custom resource definition (CRD)

• A powerful feature introduced in Kubernetes 1.7.
• Introduce unique objects or types to meet their custom requirements

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: myplatforms.contoso.com
spec:
scope: Namespaced
versions:

- name: v1alpha1
version.

storage: true
schema:

openAPIV3Schema:
type: object
properties:

Kubernetes potential
From container orchestration to network control

Edge

Custom resource

Custom
controller

Extends Kubernetes
API with network
knowledge

Tracks desired state of
the resource and tries to
keep the current state of
Kubernetes objects in
sync with
the desired state

Kubernetes API can be extended with custom resource
and customer controllers that can be used to encode
domain knowledge (=network) for specific applications

Kubernetes API can be used to configure the network and
enforce policies (security rules, traffic policy and traffic
engineering rules, service chaining rules)

Extended API

Operator
= client of the Kubernetes
API that acts as controller for
a custom resource

Monitoring, logging and assurance
through CNCF-based industry proven
tools

Leveraging the Kubernetes ecosystem
GitOps collaborative across involved teams

Edge
Network
Controller

Kubernetes

Apps,
compute

and storage
Switching
and routing

Edge

Kubernetes paradigms
immediately available
to networking teams Prometheus Fluentd Elastic

Enables organizations to continuously
deliver software applications while
efficiently managing IT and network
infrastructure
• Declarative
• Versioned and immutable
• Pulled automatically
• Continuously reconciled

Cloud Native
Computing
Foundation

Kubernetes architecture

K8s cluster

Worker nodeControl plane

etcd

api-server

Scheduler Controller
manager

Public cloud
API

kubelet
Container runtime

Kube-
proxy Pod

Service

Charts

kubect1

Manifests

client-go

Cloud
controller

Pod Pod

Worker node

kubelet
Container runtime

Kube-
proxy Pod Pod Pod

IP

Pod Pod Pod

Deployment

Service
IP

Pod Pod Pod

Deployment

Architecture of the Edge Network Controller
Extending Kubernetes to enable full network control

• Network intent operator
allows exposure of the YANG
tree of the switch and its
configuration using
Kubernetes API paradigm

• Network scaler (operator +
agent) is a lightweight
application designed to react
to events and configure the
switch appropriately

An operator is a client of the
Kubernetes API that acts as
controller for a custom
resource

API server

Kubectl Helm

Kubernetes master node

Controller manager

Scheduler

Kubelet Kube-proxy

Multus CNI plugins

Network scaler operator

Network intent operator

Network intents

Network scaler agent (CNI plugin)

Edge Network Controller

Switch

etcd

Kubernetes worker node

gNMI

Scaler: How does it work? (2)
Dynamic configuration flow

1. Deploy pod
2. Pod is scheduled to worker node
3. Kubelet requests Multus to set up networking
4. Multus calls first CNI as defined in the configuration list
5. Multus calls NwS CNI as next CNI
6. NwS CNI resolves the physical port and vlan from the

pod interface information received from Multus
7. NwS CNI retrieves the switch and port ID
8. NwS CNI creates a k8s ‘WorkloadInterface’ custom

resource
9. K8S Kubernetes API triggers the NwS controller that

owns the the WorkloadInterface CRD
10. The NwS controller reconciles the requested

WorkloadInterface intent with switch configuration via
gNMI (see further)

NwS Operator

NwS CNI

SWITCH ROUTER

Edge Network Controller: Overview

K8s Standard
Net Automation

K8s+ENC
Net Automation

Intra K8s Nodes

Switch / Router

Server Interfaces
Server IP Stack

Fu
lly

 A
ut

om
at

ed

Intra K8s Nodes

Switch / Router

EVOLUTION

Pr
e-

pr
ov

isi
on

ed
M

an
ua

l C
ha

ng
esUnderlay Layer

2/3 Services

O
ve

rla
y

+
Un

de
rla

y

Edge Network Controller: Overview

Limited context from
application requirements

Unify deploy & infra
One Pipeline Investment

Single source of Truth
Consistent Communication

between teams

ENC inherit Value

Declarative Intent
Network Design by the minute

Today

Setup and changes are
managed by different teams

Manual tracking is prone to
errors and hard to

troubleshoot

K8s+ENC
Net Automation

Intra K8s Nodes

Switch / RouterFu
lly

 A
ut

om
at

ed

O
ve

rla
y

+
Un

de
rla

y

The Edge Network Controller brings a
library of declarative intents that can be
used/modified by the operations team.

The Edge Network Controller enables to
automate the lifecycle management of
the IP network in a simple and flexible
way using declarative intents created by
the network engineering team

Value proposition of the Edge Network Controller
Role and responsibility of involved teams

</
>

Network engineers &
architects

Declarative
intents

Network
operations team

Value inputs to
declarative intents

Edge
Network
Controller

Kubernetes

Kubernetes API

IT / apps
department GitOps

Consumers of the network Designers of the network

Offer access to a specific set of network
services intents for consumption by the
application and network operational
personnel

Configure the network
using minimal, meaningful
input parameters

Delegation of authority

Apps,
compute

and storage
Switching
and routing

Edge

device_list:
srl-leaf:
type: SRLinux
interfaces:
- port: 1/1
sub: [251, 252, 253, 254]
tagging: true

- port: 1/2
sub: []
tagging: true

- port: 1/3
sub: []
tagging: true

…
srl-border:

…

Automated device provisioning with ENC-NwI
Leverage declarative templating engine to generate k8s resources

values.yaml

{{- range $name, $device := .Values.device_list }}
{{- if eq $device.type "SRLinux" }}
{{- range $ignore, $itf := $device.interfaces }}

apiVersion: nwi.enc.nokia.com/v1alpha2
kind: SRLinuxConfig
metadata:
name: {{ $name }}-e{{ toString $itf.port | replace "/" "-" }}

spec:
switchID: {{ $device.ip | quote }}
path: "/interface[name=ethernet-{{ $itf.port }}]"
properties:
name: "ethernet-{{ $itf.port }}"
admin-state: enable
description: "Managed by ENC NwI Operator"
vlan-tagging: {{ $itf.tagging }}
mtu: 9412

{{- range $ignore, $sub := $itf.sub }}

[…]

template/srl-interface-config.yaml

Network operations
team

Network engineers &
architects

</>

Network resources are managed as native k8s resources
e.g., part of automated deployments to describe application’s network SLAs
$ kubectl get srlinuxconfigs.nwi.enc.nokia.com | awk 'NR==1 || /ethernet/'
NAME SWITCH PATH STATUS AGE
srl-border-e1-1 172.30.0.8 /interface[name=ethernet-1/1] Ready 43h
srl-border-e1-1-251 172.30.0.8 /interface[name=ethernet-1/1]/subinterface[index=251] Ready 43h
srl-border-e1-2 172.30.0.8 /interface[name=ethernet-1/2] Ready 43h
srl-border-e1-2-252 172.30.0.8 /interface[name=ethernet-1/2]/subinterface[index=252] Ready 43h
srl-border-e1-3 172.30.0.8 /interface[name=ethernet-1/3] Ready 43h
srl-border-e1-3-253 172.30.0.8 /interface[name=ethernet-1/3]/subinterface[index=253] Ready 43h
srl-border-e1-4 172.30.0.8 /interface[name=ethernet-1/4] Ready 43h
srl-border-e1-4-254 172.30.0.8 /interface[name=ethernet-1/4]/subinterface[index=254] Ready 43h
srl-border-e1-5 172.30.0.8 /interface[name=ethernet-1/5] Ready 43h
srl-border-e1-5-251 172.30.0.8 /interface[name=ethernet-1/5]/subinterface[index=251] Ready 43h
srl-border-e1-5-252 172.30.0.8 /interface[name=ethernet-1/5]/subinterface[index=252] Ready 43h
srl-border-e1-5-253 172.30.0.8 /interface[name=ethernet-1/5]/subinterface[index=253] Ready 43h
srl-border-e1-5-254 172.30.0.8 /interface[name=ethernet-1/5]/subinterface[index=254] Ready 43h
srl-leaf-e1-1 172.30.0.11 /interface[name=ethernet-1/1] Ready 43h
srl-leaf-e1-1-251 172.30.0.11 /interface[name=ethernet-1/1]/subinterface[index=251] Ready 43h
srl-leaf-e1-1-252 172.30.0.11 /interface[name=ethernet-1/1]/subinterface[index=252] Ready 43h
srl-leaf-e1-1-253 172.30.0.11 /interface[name=ethernet-1/1]/subinterface[index=253] Ready 43h
srl-leaf-e1-1-254 172.30.0.11 /interface[name=ethernet-1/1]/subinterface[index=254] Ready 43h
srl-leaf-e1-2 172.30.0.11 /interface[name=ethernet-1/2] Ready 43h
srl-leaf-e1-3 172.30.0.11 /interface[name=ethernet-1/3] Ready 43h

Network operations
team

IT / apps
department

Network resources are exposed as native k8s resources
Can be consumed by applications, e.g., to track network state
$ kubectl get srlinuxconfigs.nwi.enc.nokia.com srl-leaf-e1-1 -o yaml
apiVersion: nwi.enc.nokia.com/v1alpha2
kind: SRLinuxConfig
metadata:
[…]
name: srl-leaf-e1-1
namespace: default

spec:
path: /interface[name=ethernet-1/1]
properties:
admin-state: enable
mtu: 9412
name: ethernet-1/1
vlan-tagging: true

switchID: 172.30.0.11
status:
conditions:
- lastTransitionTime: "2022-03-14T14:34:41Z"
message: ""
reason: Created
status: "True"
type: Ready

Network operations
team

IT / apps
department

Edge Network
Controller

SecGWCNF

Switching and
Routing

Intent Driven

Edge Network
Controller

MetalLBK8s
svc

Switching and
Routing

Intent Driven

Edge Network
Controller

vCMTS
CNF

Switching and
Routing

Intent Driven

Oper &
Scaler Oper

Home Enterprise Network Load Balancer BGP mode High Speed Data

BNG

Telcos / HealthCare Enterprise Telcos (MSOs)

Oper &
Scaler

Some Use Cases

Edge Network
Controller

UPFCNF

Switching and
Routing

Intent Driven

Oper &
Scaler

Nokia 5G Core Far-Edge

Telco

Edge Network
Controller

vDUCNF

Switching and
Routing

Intent Driven

Oper &
Scaler

Nokia cRAN Far-Edge

Telco

Some Use Cases (cont.)

BGP Mode K8s Load Balancer

• BGP-based leafs implement stateless load
balancing
• Add Ingress for Stateful

• No Bottlenecks.
• iBGP brings distribution across the Network Fabric.

• Resilient
• Fast failover
• BFD support (Experimental and no included in this

demo)

• Enables True Load Balancing via ECMP
• Traffic control: Cluster vs Local

Load Balancer

Home are also becoming “micro branch offices”
- Secure access to company resources is required
- Company traffic must coexist with private use

Workforces split between offices and homes are the new norm
The COVID19 pandemic only acted as accelerant

Company
WAN

VPN GW

SD
W

AN

SD
W

AN

SD
W

AN

SD
W

AN

SD
W

AN

SD
W

AN

SD
W

AN

SD
W

AN

E2E VPNs are challenging
- Expensive, e.g., licenses, support costs
- Complex scalability, e.g., on-premises HW appliances
- Operational complexity, e.g., keys/certificates, active

troubleshooting of network-induced issues such as
CGNAT/PMTU

SD-WAN gateways in the home are not a solution either…

Key takeaways

The Edge Network Controller has unique characteristics inherited from Kubernetes
to help CSPs automate their edge cloud networks

Lightweight. Powerful. Nimble.
Minimal resources on a server

• An application of Kubernetes,
hosted on the same cluster

• Strong requirement for edge
locations with very limited
space

As powerful as Kubernetes can be

• Leverage its declarative intent-
based approach

• Benefits from its entire ecosystem
and tooling

Tied to the applications it supports

• Autonomous event-driven network
automation

• Storage, compute and network in
the same lifecycle management

Thanks
p1nrojas

