
The Spring Kernel:
A New Paradigm for Real-Time

Operating Systems*

J o h n A. S tankovic

Kr i th i R a m a m r i t h a m

Dept . of C o m p u t e r and i n f o r m a t i o n Science
Univers i ty of M a s s a c h u s e t t s

A m h e r s t , Mass . 01003

F e b r u a r y 24, 1989

Abs t rac t

Next generation real-time systems will require greater flexibility and predictability
than is commonly found in today's systems. These future systems include the space sta-
tion, integrated vision/robotics/AI systems, collections of humans/robots coordinating to
achieve common objectives (usually in hazardous environments such as undersea explo-
ration or chemical plants), and various command and control applications. The Spring
kernel is a research oriented kernel designed to form the basis of a flexible, hard real-time
operating system for such applications. Our approach challenges several basic assump-
tions upon which most current real-time operating systems are built and subsequently
advocates a new paradigm based on the notion of predictability and a method for on-line
dynamic guarantees of deadlines. The Spring kernel is being implemented on a network
of (68020 based) multiprocessors called SpringNet.

1 I n t r o d u c t i o n

Real- t ime computing is tha t type of computing where the correctness of the system depends
not only oll the logical result of the computation, but also on the time at which the results
are produced. Real- t ime computing systems play a vital role in our society and the spectrum

*This work was supported by ONR under contract NOOO14-85-K-0389 and NSF under grant DCR-
8500332.

56

of complexity of such systems varies widely from the very simple to the very complex. Exam-
ples of current real-time computing systems are the control of laboratory experiments, the
control of engines in automobiles, command and control systems, nuclear power plants, pro-
cess control plants, flight control systems, space shuttle and aircraft avionics, and robotics.
Next generation systems will include the autonomous land rover, controllers of robots with
elastic joints, systems found in intelligent manufacturing, the space stat:?n, and undersea ex-
ploration. The more complicated real-time systems are expensive to build and their ~iming
constraints are verified with ad hoc techniques, or with expensive and extensive simulations.
Minor changes in the system result in another extensive round of testing. Different compo-
nents of such systems are extremely difficult to integrate with each other, and consequently
add to the cost of such systems. Millions (even billions) of dollars are currently being spent
(wasted) by industry and government to build today's real-time systems. The current brute
force techniques will not scale to meet the requirements of guaranteeing real-time constraints
of the next generation systems [13].

One of the serious problems in scaling to larger systems and in enhailcing the performance
predictability of these systems, we believe, is that the OS paradigms currently being used
in these systems are wrong. In this paper we discuss why they are wrong (Section 2), and
then present a new paradigm discussing the details of how the Spring kernel supports this
new paradigm. These details are given in Sections 3 (the general system structure), Section 4
(the guarantee algorithm and its benefits) and Section 5 (o~hc~" specifics regarding the Spring
kernel). Concluding remarks are made in Section 6.

2 L i m i t a t i o n s o f t h e C u r r e n t R T O S P a r a d i g m

Many of tile more complicated real-time systems include a real-time kernel [9][1] [6] [10].
These kernels are simply stripped down and optimized versions of timesharing operating sys-
tems. Consequently, they contain the same basic paradigms found "m timesharing operating
systems which, in many cases, are not suitable for real-time systems. In this section we
discuss the limitations of the curren t real-time operating system paradigm.

The basic characteristics of current real-time kernels include:

• a fast context switch,

• a small size (with its associated minimal functionality),

• the ability to respond to external interrupts quickly,

• multi-tasking with task coordination being supported by features such as ports, events,
signals, and semaphores,

• fixed or variable sized partitions for memory management (no virtv.al memory),

• the presence of special sequential files that can accumulate data at a fast rate,

55

• priority scheduling,

• the minimization of intervals during which interrupts are disabled,

• support of a real-time clock,

• primitives to delay tasks for a fixed amotmt of time and to pause / resume tasks, and

• special alarms and t imeouts.

These kernels:

• assume that application tasks request resources as if they were random processes; if
resources requested by a task are available, they are granted, otherwise the task is
blocked, or blocking the tasks when the resources are not available

• assume that very little is known about the tasks a priori,

• a t t empt to insure fairness among the tasks,

• a t t empt to minimize average response time, and

• assume that there exist many independent tasks with independent address spaces.

Most real-time operating systems a t tempt to support t ime critical applications by imple-
menting a set of primitives which are very fast. This is a laudable goal. However, fast is a
relative term and not sufficient when dealing with real-time constraints. The main problems
with simply making timesharing operating systems fast is that it is the wrong paradigm,
there is no explicit support for meeting real-time constraints, and the use (without exten-
sive simulations) of these systems does not provide system designers with a high degree of
confidence that the system will indeed meet its real-time constraints (i.e., the system is too
unpredictable) .

Note that even though current kernels are successfully used in many of today 's real- t ime
embedded systems, it is only at greater cost and inflexibility than is desired. For example,
the current technology burdens the designer with the unenviable task of mapping a set of
specified real-t ime constraints into a priority order in such a manner that all tasks will meet
their deadlines. Thus, when using the current paradigms it is difficult to predict how tasks
invoked dynamically interact with other active tasks, where blocking over resources will occur,
and what the subsequent effect of this interaction and blocking is on the timing constraints of
all the tasks. As the next generation hard real-time systems become more dynamic and more
sophisticated, it will be necessary to develop cheaper ways to guarantee real-time constraints
and to meet the flexibility and predictabili ty requirements.

Once again, our claim is that the basic paradigms for current real-t ime operating systems
are wrong. In real-time systems the behavior of each task is well unders tood as a function of
the state of tile system and inputs. There is no need to treat it as a random process. The

56

specific characteristics of tasks that can be assumed known are described later in Section
4.2. Fairness and minimizing average response time are not impor tant in a real-time system.
What is impor tant is that all critical tasks complete by their deadline and that as many as
possible other tasks also complete by their deadline (usually weighted by their importance) .
In other words, more appropriate metrics than fairness and average response t ime are required
to be supported. Finally, a real-time system supports a single application with all the tasks
acting as members of a team to accomplish the best system wide behavior. Tasks are not all
independent and it may not be necessary to support independent address spaces.

In addition to the problems listed above concerning the basic paradigms of current oper-
ating systems, many other more specific problems exist with today's real-time kernels. For
example, many real-time systems are highly static and consequently contain static scheduling
policies. However, for next generation real-time systems tile dynamics, the need for adapt-
ability and reliability, and the iuherent complexity will make it impossible to precalculate
all possible combinations of tasks that might occur. This precludes use of static scheduling
policies. Further, even in those kernels where more dynamic scheduling algorithms occur,
they are inadequate for two main reasons: (1) they do not address the need for an integrated
cpu scheduling and resource allocation scheme, and (2) they don't handle the end-to-end
scheduling problem. We will further discuss these two important issues in Section 4.3.

In summary, the new real-time OS paradigm should be based on the following consider-
ations:

tasks in a real-time application are known a priori and hence can be analyzed to deter-
mine their characteristics. Further, designers usually follow strict rules and guidelines
in programming tasks, e.g., tasks will usually not have too long an execution time nor
have a large variance in execution time. These facts can be exploited in developing a
solution to real-time sytems. Tasks are part of a single application with a system-wide
objective,

the value of tasks executed should be maximized, where the value of a task that com-
pletes before its deadline is its full value (depends on what the task does) and some
diminished value (including a very negative value or zero) if it does not make its dead-
line,

predictabil i ty should be ensured so that the timing properties of both individual tasks
and the system can be assessed (in other words we have to be able to categorize the
performance of tasks and the system with respect to their timing properties), and

flexibility should be ensured so that system modifications and on-line dynamics are
more easily accommodated.

3 The General System Structure

This section presents the basic environment we are assuming and the general s t ructure for
the new real-time operating system paradigm we are proposing.

57

We assume that the environment is dynamic, large and complex. In this environment
there exists many types of tasks. There are critical tasks, essential tasks, non-essential tasks,
and tasks' deadlines may range over a wide spectrum. Critical tasks are those tasks which
must make their deadline, otherwise a catastrophic result might occur (missing their deadlines
will contr ibute a minus infinity value to the system). These tasks must be verified to always
be able to meet their deadlines subject to some specified number of failures. Resources
will be reserved for such tasks. That is, a worst case anaysis must be done for these tasks
to guarantee that their deadlines are met. Using current OS paradigms such a worst case
analysis, even for a small number of tasks is complex. Our new, more predictable kernel
facilitates this worst case analysis. Note that the number of truly critical tasks (even in
very large systems) will be small in comparison to the total number of tasks in the system.
Essential tasks are tasks that have deadlines and are important to the operat ion of the system,
but will not cause a catastrophy if they are not finished on time. There are a large number
of such tasks. It is necessary to treat such tasks in a dynamic manner as it is impossible
to reserve enough resources for all contingencies with respect to these tasks. Our approach
applies an on-line, dynamic guarantee to this collection of tasks. Non-essential tasks, whether
they have deadlines or not, execute when they it do not impact critical or essential tasks.
Many background tasks, long range planning tasks, maintenance functions, etc. fall into this
category. Some non-critical tasks may have extremely tight deadlines. These tasks cannot
be dynamically scheduled since it would take more time to ascertain the schedule than there
exists before the task's deadline. Such tasks must also have preallocated resources. These
tasks usually occur in the data acquisition front ends of the real-time system.

Task characteristics are complicated in many other ways as well. For example, a task may
be preemptable or not, periodic or aperiodic, have a variety of tiruing constraints, precedence
constraints and communication constraints. All these task complications must be addressed
together with the environment characteristcs which will be dynamic, dis tr ibuted and evolving.

In light of these complexities, the key to next generation real-time operating systems will
be finding the correct approach to make the systems predictable yet flexible ill such a way
as to be able to guarantee and predict the performance of the system. Our approach to
support ing this new paradigm combines the following ideas resulting, we believe, in a flexible
yet predictable system:

* resource segmentat ion/part i t ioning,

, functional parti t ioning,

• selective preallocation,

• a priori guarantee for critical tasks,

• an on-line guarantee for essential tasks,

• integrated cpu scheduling and resource allocation, and

• end-to-end scheduling.

58

Of course, such systems will also have to be fault tolerant, but we do not discuss this
aspect in this paper. In the remainder of this paper we hope to show how the Spring kernel
incorporates the above ideas.

4 The Guarantee A l g o r i t h m and Its Benef i t s

The notion of guaranteeing timing constraints is central to our approach. Again, all critical
tasks are guaranteed a priori and resources are reserved for them (this is part of the selective
preallocation policy used in Spring). The essential tasks are guaranteed on-line. This allows
for many task invocation scenarios to be handled dynamically (supporting the flexibility
requirement). In this section we will discuss the dynamic guarantee of essential tasks in more
depth, pointing out many of its advantages.

4 .1 A S p r i n g N o d e

VVe assume that the Spring system is physically distr ibuted and composed of a network of
multiprocessors. Each multiprocessor contains one (or more) application processors, one (or
more) system processors, and an I /O subsystem. System processors 1 offioad the scheduling
algori thm and other OS overhead from the application tasks both for speed, and so t h a t
t h i s o v e r h e a d d o e s no t c a u s e u n c e r t a i n t y in e x e c u t i n g g u a r a n t e e d t a s k s . All system
tasks are resident in the memory of the system processors. The I /O subsystem is a separate
entity from the Spring kernel and it handles non-critical I /O , slow I /O devices, and fast
sensors. The I /O subsystem can be controlled by some current real-time kernel such as
VlZTX [9], or by completely dedicating processors or cycles on processors to these devices.

It is impor tant to note that although system tasks run on system processors, application
tasks can run on both application processors and system processors by explicitly reserving
time on the system processors. This only becomes necessary if the surplus processing power
of the application processor(s) is (are) not sufficient at a given point in time. If bo th the
application processors and a port ion of the system processors are still not sufficient to handle
the current load, then we invoke the distr ibuted scheduling port ion ~ of our algorithm. Some
modifications to our previously reported work have been made for implementing dis t r ibuted
scheduling on SpringNet. Most notably, the code for tasks is now replicated at various nodes,
so tt~at (~nlv signals, partial state informatinn, or input to the tasks need be t ransmit ted when
distr ibuted scheduling occurs, rather than transmitt ing the task code itself.

To be more specific, the system processors run most of the operating system, as well as
application specific tasks that do not have deadlines. The scheduling algorithm separates pol-
icy from mechanism and is composed of 4 modules, one of which can be used in two different
ways. At the lowest level multiple dispatchers exist, one running on each of the application

1Ultimately, system processors could be specifically designed to offer harware support to our system activ-
ities such as guaranteeing tasks.

~See [7] [8] for details on distributed scheduling.

59

processors. The dispatcher simply removes the next (ready) task from a system task table
(STT) that contains all guaranteed tasl~s arranged in the proper order for each application
processor. The rest of the scheduling modules are executed on the system processor. The
second module is a local scheduler. The local scheduler can be used in two ways. First , the
local scheduler is responsible for locally guaranteeing that a new task can make its deadline,
and for ordering the tasks properly in the STT. The logic involved in this algori thm is a ma-
jor inovation of our work. Second, the local scheduler can also be invoked as a time planner
- valuable for real-time AI applications. This important idea means that it is possible to
consider the impact of system level allocations and resource conflicts on the execution t ime
propert ies of application tasks and that this information can then be used by the applica-
tion to more accurately accomplish goals on time. Using the local scheduler as a planner is
considered a high level OS activity and therefore will not be discussed any further in this
paper. The third scheduling module is the global (distr ibuted) scheduler which a t t empts to
find a site for execution for any task that cannot be locally guaranteed. The final module is
a Meta Level Controller (MLC) which has the responsibility of adapting various parameters
or switching scheduling algorithms by noticing significant changes in the environment. These
capabilities of the MLC support some of the dynamics required by next generation real-t ime
systems. The distr ibuted scheduling component and the MLC are not discussed any further
in this paper since they can be considered upper levels of the OS and are not part of the
Spring kernel itself. All OS tasks that run on the system processor have a minimum periodic
rate which is guaranteed, but can also be invoked asynchronously due to events such as the
arrival of a new task, if that asynchronous invocation would not violate the periodic execu-
tion constraint of other system tasks. Asynchronous events are ordered by importance, e.g.,
a local scheduling routine is of higher importance than the meta level controller.

4 . 2 T a s k s

At the kernel level there exists an executable and guaranteeable entity called a task. A task
consists of reentrant code, local data, dynamic data segments, a stack, a task descriptor (TD)
and a task control block (TCB). Multiple instances of a task may be invoked. In this case
the reentrant code and task descriptor are shared.

Tasks are characterized by:

• ID

• Group ID, if any (tasks may be part of a task group or a dependent task group - these
are more fully explained below)

• C (a worse case execution time) (may be a formula that depends on various input da ta
and /o r s tate information)

• Deadline (D) or period or other rea l - t ime constraints

• criticalness (this is an indication of the importance of this task)

• preemptive or non-preemptive proper ty

60

• max imum number and type of resources (this includes memory segments, ports , etc.)
needed

• type: non real-time or real-time,

• incremental task or not (incremental tasks compute an answer immediately and then
continue to refine the answer for the rest of its requested computat ion time)

• precedence graph (describes the required precedence among tasks in a task group or a
dependent task group)

• communication graph (list of tasks with which a task communicates) , and type of
communicat ion (asynchronous or synchronous)

• location of task copies

• conditional precedence (not discussed in this paper).

All the above information concerning a task is maintained in the task descriptor (TD).
Much of the information is also maintained in the task control block (TCB) with the difference
being that the information in the task control block is specific to a particular instance of the
task. For example, a task descriptor might indicate that the worst case execution t ime for
TASK A is 5z milliseconds where z is the number of input data items at the t ime the task
is invoked. At invocation time a shor t procedure is executed to compute the actual worst
case t ime for this module and this value is then inserted into the TCB. The guarantee is
then performed against this specific task instance. All the other fields dealing with time,
computat ion, resources or criticalness are handled in a similar way.

While the kernel supports tasks, the local scheduler not only guarantees tasks, but also
supports the abstractions of task groups and dependent task groups. A task group is a
collection of simple tasks that have precedence constraints among themselves, but have a
single deadline. Each task acquires resources before it begins and can release the resources
upon its completion. For task groups, it is assumed that when the task group is invoked, all
tasks in the group can be sized (this means that the worst case computat ion time and resource
requirements of each task can be determined at invocation time). A dependent task group is
the same as a task group except that only those tasks with no precedence constraints can be
sized at invocation time. The remaining tasks of the dependent group can only be sized when
all preceding tasks are completed. The dependent task group requires some special handling
with respect to guarantees. Our work in this area is tentat ive and hence is not discussed
further in this paper.

4 , 3 T h e G u a r a n t e e A l g o r i t h m

The basic notion and properties of guarantee have been developed elsewhere [7] and have the
following characteristics:

61

• the approach of providing for on-line dynamic guarantee of deadlines for essential tasks
allows the unique abstract ion that at any point in time the operating system knows
exactly what set of tasks are guaranteed to make their deadlines 3, what , where and
when spare resources exist or will exist, a complete schedule for the guaranteed tasks,
and which tasks are running under non-guaranteed assumptions,

• it integrates cpu scheduling with resource allocation,

• conflicts over resources are avoided thereby eliminating the random nature of waiting
for resources found in timesharing operating systems (this same feature also tends
to minimize context switches since tasks are not being context switched to wait for
resources),

• there is a separation of dispatching and guarantee allowing these system functions to
run in parallel; the dispatcher is always working with a set of tasks which have been
previously validated to make their deadlines and the guarantee routine operates on the
current set of guaranteed tasks plus any newly invoked tasks,

early notification: by performing the guarantee calculation when a task arrives there
may be t ime to reallocate the task on another host of the system via the global module
of the scheduling algorithm; early notification also has fault tolerance implications in
that it is now possible to run alternative error handling tasks early, before a deadline
is missed,

using precedence constraints it is possible to guarantee end-to-end timing constraints,

within this approach there is notion of still "possibly" making the deadline even if the
task is not guaranteed, that is, if a task is not guaranteed it receives any idle cycles
and in parallel there is an a t t empt to get the task guaranteed oil another host of the
system subject to location dependent constraints,

some real-time systems assign fixed size slots to tasks based on their worst case execution
times, we guarantee based on worst case times but any unused cpu cycles are reclaimed
when resource conflicts don't prohibit this reclamation,

worst case execution t ime is computed for a specific invocation of a task and hence will
be less pessimistic than the absolute worst case execution time,

the guarantee routine supports the co-existence of real-time and non real-t ime tasks,
and

the guarantee can be subject to computat ion time requirements, deadline or periodic
time constraints, resource requirements where resnurces are segmented, criticalness lev-
els for tasks, precedence constraints, I /O requirements, etc. depending on the specific
guarantee algorithm in use in a given system. This is a realistic set of requirements.

We now describe the guarantee algorithm and give an example. We begin the discussion
by concentrating on the most difficult aspect of scheduling, handling the resource require-
ments of tasks. It is this aspect of scheduling which integrates cpu scheduling and resource

3In contrast, current real-time scheduling algorithms such as earliest deadline have no global knowledge of
the task set nor of the systems ability to meet deadlines; they only know which task to run next.

62

allocation and thereby provides resource conflict avoidance and predictability. To simplify
the discussion, we first describe the algorithm for independent tasks on nodes with a single
application processor and a single system processor. At the end of this section we describe
the extensions needed to handle precedence constraints (which, in turn, can be used to deal
with end-to-end scheduling), periodic tasks, multiple application processors and criticalness.
We will also discuss the run time costs of the algorithm.

The Spring kernel local scheduler considers the problem of scheduling a set of n tasks
7", in a system with r resources 7~. A resource can be used in two different modes: When
in shared mode, several tasks can use the resource simultaneously; when in exclusive mode,
only one task can use it at a time. A file or data structure are examples of such resources: a
file can be read by multiple users simultaneously but can be written by a single user only. A
CPU, on the other hand, is a resource that can be used only in exclusive mode. Each task
T E T, has

1. Processing time, Tp > O,

2. Deadline, To,

3. Resource requirements, T R = (TR(1), T1~(2), ..., Tic(r)), where

0 T does not require resource Ri;
TR(i) = 1 T requires Ri in shared mode;

2 T requires Ri in exclusive mode,

and

4. Scheduled start time, Ts,t (determined from the processing time, deadline, and resource
requirements of all tasks).

A partial schedule is a subset of the tasks in T whose scheduled start times have been
assigned. A partial schedule $ is feasible if the scheduled start times are such that all the
tasks in S will meet their deadlines, i.e., VT E 5, (Tsst + Tp <_ TD). For the tasks in a feasible
schedule, the resources required by each task are available in the mode required by the task
at its scheduled start time. A set of tasks is schedulable if there exists a feasible schedule for
it. Thus, the scheduler must determine if a feasible schedule for a set of tasks exists. Also,
it should be obvious from the above description that we are interested in non-preemptive
scheduling. Thus, once a task begins execution, it will release its resources only after it has
executed for Tp units of time.

Suppose tasks in set I" have been previously scheduled and a new task arrives. We a t tempt
to schedule the set of tasks H = 1 ~ U {new task}. If this set of tasks is found schedulable, the
new task is scheduled, otherwise not. In either case, tasks in F remain scheduled.

For a given set of tasks, the problem of finding a feasible schedule is, in fact, a search
problem. The structure of the search space is a search tree. The root of the search tree is
the empty schedule. An intermediate vertex of the search tree is a part ial schedule. A leaf,

63

a terminal vertex, is a complete schedule. Note that not all leaves correspond to feasible
schedules. The goal of the scheduling algorithm is to search for a leaf that corresponds to a
feasible schedule.

An opt imal algorithm, in the worst case, may make an exhaustive search which is com-
putat ional ly intractable. In order to make the algorithm computat ionally t ractable even in
the worst case, we take a heuristic approach for this search. We develop a heuristic function,
H. That is, on each level of the search, function H is applied to each of the tasks that remain
to be scheduled. The task with the minimum value of function tt is selected to extend the
current (partial) schedule. As a result of the above directed search, even in the worst case,
our scheduling algorithm is not exponential. Fortunately, our simulation studies, described
in [14], [15], and [16] show that algorithms using linear combinations of simple heuristics
perform very well - - very close to the optimal algorithm that uses exhaustive search.

The pseudo code for our scheduling algorithm is given in Figure 1. The algori thm main-
tains two vectors E A T ~ and E A T ~, each element of the vector corresponding to a resource.
E A T ~ and E A T ~, respectively, indicate the earliest available times of resources in shared and
exclusive mode, given that the tasks in schedule have been scheduled and tasks in the task_set
remain to be scheduled. At each level of search, according to the earliest available times of
resources E A T ~ and E A T ~, the algorithm calculates the earliest start time T,.,t for each task
which remains to be scheduled. The detailed computa t ion methods for E A T ~, E A T ~, and
Tes~ are not discussed here (see [16]).

The algori thm invokes a boolean function called strongly-feasible. A feasible part ial sched-
ule is said to be strongly-feasible if all schedules obtained by extending this schedule one more
level with any one of the remaining tasks are also feasible. If extending a feasible part ial sched-
ule by any one of the remaining tasks makes the extended schedule infeasible, then in none
of the possible future extensions will this task meet its deadline. Hence it is appropria te to
stop the search when a part ial schedule is not strongly-feasible.

From the pseudo-code, we see that beginning with the empty schedule, the algori thm
searches the next level by expanding the current vertex (a part ial schedule) to only one of its
immedia te descendants. If the new partial schedule is strongly-feasible, the search continues
until a full feasible schedule is met. At this point, the searching process (i.e., the scheduling
process) succeeds and the task set is known to be schedulable.

If at any level, a schedule that is not strongly-feasible is met , the algorithm stops the
se~rchin~ (scheduling) process and a nnolmces that this set of tasks is not schedulnhle and
typically either an error message is sent, an error handler is executed, or dis tr ibuted scheduling
is invoked. On the other hand it is also possible to extend the algorithm to continue the
search even after a failure, for example, by limited backtracking. While we do not discuss
backtracking in detail, we will later present some performance results where we allow some
limited amount of backtracking.

Clearly, at each level of search, effectively and correctly selecting the immedia te descen-
dant is difficult, but very important for the success of tile algorithm. The heuristic function
H becomes the core of the algorithm.

6/,

Procedure Scheduler(task_set: task_set..type; var schedule: schedule_type; var schedulable:
boolean);

(*parameter task_set is the given set of tasks to be scheduled*)

VAR EAT ~, EATS: vector_type; (* Earliest Available Times of Resources *)

BEGIN

schedule := empty;

schedulable := true;

EAT e := 0; (* a zero vector*)

EAT ~ := 0;

WHILE (NOT empty(task_set)) AND (schedulable) DO

BEGIN

calculate Te~t for each task T E task_set;

IF NOT strongly-feasible(task_set, schedule) THEN

schedulable := false;

ELSE

BEGIN

apply function H to each task in task_set;

let T be the task with the minimum value of function H;

T,~t := T~,t;

task_set := task_set - T ;

schedule := append(schedule, T); (* append T to schedule ~')

calculate new values of E A T ~ and EATS;

END;

END;

END;

Figure 1: Heuristic Scheduling Algori thm

65

From extensive simulations reported in [16] we have determined that a combination of
two factors is an excellent heuristic function tI. Consider:

H (T) = TD + W * T~,t;

In the above formula, W is a weight, and may be adjusted for different application environ-
ments. We have shown that no single heuristic performs satisfactorily and tha t the above
combination of factors does perform well. These two factors address the deadline, the worst
case computat ion time and resource contention - three important issues.

One impor tant aspect of this study, different from previous work, is that we specifically
consider resource requirements and model resource use in two modes: exclusive mode and
shared mode. We have shown that by modeling two access modes, more task sets are schedu-
lable than if only exclusive mode were used. Further, this algorithm takes realistic resource
requirements into account, and it has the appealing property tha t it avoids conflicts (thereby
avoiding waits) over resources. It is important to note that resource conflicts are solved by
scheduling at different times tasks which contend for a given resource. This avoids locking
and its consequent unknown delays. If task A is cornposed of multiple task segments, and
task A needs to hold a serially shareable resource across multiple task segments, then tha t
resource is dedicated to task A during that entire period, call it X, and other tasks which
need tha t resource cannot be scheduled to overlap with task A during period X 4. Other tasks
can overlap with task A. This strategy also minimizes context switches, since tasks are not
subject to arbitrary interrupts generated by tasks arbitrarily waiting for resources. As an
aside, if a particular hard real-time system has no conflict over resources except the CPU
then it is possible to assume that resources are always available to ready tasks and one may
use our preemptive algorithm [15], instead of the non-preemptive algori thm presented in this
paper.

It is also important to note that the execution time cost of the algori thm is a function
of tile average number of resources that each task requires, and not the tota l number of
resources. Consequently, even if there are 100's of critical resources defined per site, as long
as each task requires some small number of them (e.g., less than 10), then the impact of the
number of resources on the execution time of the algorithm is negligible.

Many extensions to the algorithm described above are possible: First of all, it is easy to
immediately extend the algorithm to handle the case where each resource may have multiple
instances and a task may request one or more instances of a resource. For this case, the vectors
E A T ~ and E A T ~ will be matrices, each row corresponding to a resource, and each mat r ix
element corresponding to an instance of a resource. Hence, handling multiple application

processors is simple, and is accomplished by making the exclusive resource entry for the
processor, a vector.

4General real-time system design rules encourage a programming style in which no task holds a resource
for a long period of time (over many segments).

66

Second, the algorithm can be extended to handle the case where tasks can be s tar ted
only after some time in the future. For example, this occurs for periodic tasks, and for non-
periodic tasks with future start times. Conceptually, the only modification that needs to be
made to our scheme is in the definition of tasks' scheduled start time:

Te~t = Ma~(T ' s start time, E A T S)

where u = s or e if T needs Ri in shared or exclusive mode, respectively, tIowever, more effi-
cient techniques to handle periodic tasks are being investigated. These techniques are based
on a guaranteed template so that each instance of a periodic task need not be guaranteed
separately.

Third, in order to handle precedence constraints we simply add another factor to the
heuristic function that biases those eligible tasks with long critical paths to be chosen next.
A task becomes eligible to execute only when all of its ancestors are scheduled. Precedence
constraints are used to model end-to-end timing constraints both for a single node and across
nodes [4]. Again, various optimizations are being investigated here.

Fourth, a major advantage of our approach is that we can separate deadlines from critical-
ness. To date, we have equated the criticalness of a task with its value. Hence, to maximize
value in the system, as many tasks as possible should make their deadline and, if ally tasks
cannot make their deadlines, then those tasks should be the least critical (least valuable)
ones. Now, in describing the algorithm, for ease of explanation and to emphasize the avoid-
ance and resource requirements aspects of our scheduling approach, it was described using
deadlines only. In actuality, in the first phase of the algorithm the guarantee is performed
as described above using deadlines and resource constraints. If the task is guaranteed then
the criticalness value plays no part. On the other hand, when a task is not guaranteed, then
the guarantee routine will remove the least critical tasks from the system task table if those
preemptions contribute to the subsequent guarantee of the new task. The lowest criticalness
tasks which were preempted, or the original task, if none, are then subject to distr ibuted
scheduling. Various algorithms for this combination of deadlines and criticalness, and local
and distributed scheduling have been developed and analyzed [2].

5 O t h e r K e r n e l F e a t u r e s

The kernel supports the abstractions of tasks, task groups, dependent task groHps, various
rpsol~rce segments such as code, TCBs, TDs, local data., data, ports, virhla] di~ks, n,,T1 seg-
mented memory, and IPC among tasks. It is possible to share memory (one or more data
segments) between tasks. Scheduling is an integral part of the kernel and the abstract ion
provided is one of a guaranteed task set. The scheduling algorithm handles resource allo-
cation, avoids blocking, and guarantees tasks; the scheduling algori thm is the single most
distinguishing feature of the kernel. I /O and I /O interrupts are primarily handled by the
front end I /O subsystem. It is ' important to note that the S]gring kernel could be considered
a back-end hard real - t ime kernel that deals with deadlines of high level tasks. Because of
this, interrupts handled by the Spring kernel itself are well controlled and accounted for in
t iming constraints.

67

To enhance predictability, system primitives have capped execution times, and some prim-
itives execute as iterative algorithms where the number of iterations it will currently make
depends on state information including available time.

A brief overview of several of these additional aspects of the Spring kernel is now given.

5 .1 T a s k M a n a g e m e n t

The Spring kernel contains task management primitives that utilize the notion ofpreal locat ion
where possible to improve speed and to eliminate unpredictable delays. For example, all tasks
with hard rea l - t ime requirements are core resident, or are made core resident before they can
be invoked with hard deadlines. In addition, a system initialization program loads code,
set up TCBs, TDs, local data, data, ports, virtual disks and non segmented memory using
the kernel primitives. Multiple instances of a task may be created at initialization t ime and
multiple free TCBs, TDs, ports and virtual disks may also be created at initialization time.
Subsequently, dynamic operation of the system only needs to free and allocate these segments
ra ther than creating them. Facilities also exist for dynamically creating new segments of any
type, but with proper design such facilities should be used sparingly and not under hard
real-t ime constraints. Using this approach, the system can be fast and predictable, yet still
be flexible enough to accomodate change.

5 .2 M e m o r y M a n a g e m e n t

Memory management techniques must not introduce erratic delays into the execution t ime of
a task. Since page faults and page replacements in demand paging schemes create large and
unpredictable delays, these memory management techniques (as currently implemented) are
not suitable to real-t ime applications with a need to guarantee t iming constraints. Instead,
the Spring Operating System memory management adheres to a memory segmentat ion rule
with a fixed memory management scheme. Let us now provide an example. We require that
there be a reasonable amount of memory at each host 5, and that memory be considered a
single address space.

Memory segments include code, local data, data (including shared data) , ports, stacks,
virtual disks, TCBs, TDs and non segmented memory. Tasks require a m ax i m um number
of memory segments of each type, but at invocation t ime a task might dynamical ly require
different amounts of segments. The max imum is known a priori. Tasks can communicate
using shared memory or ports. However, recall that the scheduling algori thm will automati-
cally handle synchronization over this shared memory or ports. Tasks may be replicated at
one or more sites. A program named the Configurator, calling the kernel primitives, initially
loads the pr imary memory of each site with the entire collection of predetermined memory

5Many real-time systems are composed of disjoint phases, e.g., in the Space Shuttle [3] there are pre-flight
processing, liftoff, space cruising, and descent phases. In this type of non-distributed system, the amount of
menlory needed is enough to contain the largest phase, not the entire system.

68

segments. Changes occur dynamically to this core resident set, but it is done under strict
t iming requirements or in background mode.

When a task is activated, any dynamic information about its resource requirements or
t iming constraints are computed and set into the TCB; the guarantee routine then determines
if it will be able to make its deadline using the algorithm described in section 4. Note that
the execution of the guarantee algorithm ensures that the task will obtain the necessary
segments such as the ports, data segments, etc. and at the right time. (Again, tasks always
identify their max imum resource requirements; this is feasible in a real-t ime system). If
a task is guaranteed it is placed in the system task table (part of memory in the system
processor) for use by the application processor dispatcher. A separate dispatcher exists for
system tasks which are executing on the system processor. Note that a fixed part i t ion memory
management scheme (of multiple sizes) is very effective when the sizes of tasks tend to cluster
around certain common values, and this is precisely what our system assumes. Also, pre-
allocating as much as possible increases the speed of the OS with a loss in generality. One of
the main engineering issues of hard real - t ime systems is where to make this tradeoff between
pre-allocating resources and flexibility. Our approach makes this tradeoff by dedicating f ront -
end processors to both I /O and tasks with short t ime constraints. As flmctionality and laxity
of tasks increase, we employ on-line, dynamic techniques to acquire flexibility.

5.3 I /O

Many of tile real-time constraints in a system arise due to I /O devices including sensors.
The set of I /O devices that exist for a given application will be quite static in most systems.
Even if the set of I /O devices changes since they can be part i t ioned from the main system
and changes to them are isolated these changes have minimal impact on the rest of the
kernel. Special independent driver processes must be designed to handle the special t iming
needs of these devices. In Spring we separate slow and fast I /O devices. Slow I /O devices
are multiplexed through a front end dedicated I /O processor. System support for this is
preallocated a n d not part of the dynamic on-line guarantee. However, the slow I /O devices
might invoke a task which does have a deadline and is subject to the guarantee. Fast I /O
devices such as sensors are handled with a dedicated processor, or have dedicated cycles on a
given processor or bus. The fast I /O devices are critical since they interact more closely with
the real-t ime application and have tight t ime constraints. They might invoke subsequent
real-t ime higher level tasks. However, it is precisely because of the tight t iming constraints
and the relatively static nature of the collection of sensors that we pre-allocate resources for
tl,,, fast l /O sensors. In summary, our strategy suggests that many tasks which have real-t ime
constraints can be dealt with statically, leaving a smaller number of tasks which typically have
higher levels of functionality and higher laxity for the dynamic, on-line guarantee routine.

69

5.4 I n t e r r u p t s

Another important issue is interrupts. Interrupts are an environment consideration which
causes problems because they can create unpredictable delays, if treated as a random process,
as is done in most timesharing operating systems. Further, in most timesharing systems,
the operating system often gives higher priority to interrupt handling routines than that
given to application tasks, because interrupt handling routines usually deal with I /O devices
that have real-time constraints, whereas most application programs in timesharing systems
don't . In the context of a real-time system, this assumption is certainly invalid because
the application task delayed by interrupt handling routines could in fact be more urgent.
Therefore, interrupts are a form of event driven scheduling, and, in fact, the Spring system
can be viewed as having three schedulers: one that schedules interrupts (usually immediately)
on the front end processors in the I /O subsystem (what was discussed above), another that
is part of the Spring kernel proper that guarantees and schedules high level application tasks
that have hard deadlines, and a third which schedules the OS tasks that execute on the system
processor. Interrupts from the front end I /O subsystem to the Spring kernel are handled by
the system processors so this doesn't affect application tasks. In other words, I /O interrupts
are treated as instantiating a new task which is subject to the guarantee routine just like any
other task. The system processor fields interrupts (when turned on) from the I /O front end
subsystem and shields the application tasks, running on the application processors from the
interrupts.

6 Summary

In this paper we claim that current real-time operating systems are using the wrong
paradigms. We propose a new set of paradigms and discuss the Spring kernel which sup-
ports these new paradigms. The value of our approach has been repeatedly demonstra ted
by simulation [2,7,8,11,14,15,16]. We are now in the process of implementing the kernel on a
network of multiprocessors. For more details on the kernel design see [12].

References

[1] Alger, L. and J. Lala, "Real-Time Operating System For A Nuclear Power Plant C¢)m-
p,.Iter," Proc. 1986 Real-Time Systems Symposium, Dec. 1986.

[2] Biyabani, S., "The Integration of Criticalness and Deadline Considerations in IIard Real-
Time Systems," Masters thesis, Univ. of Mass, May 1988.

[3] Carlow, G., "Architecture of the Space Shuttle Primary Avionics Software System,"
CACM, Vol. 27, No..9, Sept. 1984.

[4] Cheng, S., "Dynamic Scheduling in Hard Real-Time Systems," PhD thesis, Dept of
Computer Science, UMASS, 1987.

70

[5] Garey, M.R., and Johnson D.S., "Complexity Results for Multiprocessor Scheduling
under Resource Constraints", SIAM J. Comput., 4, 1975.

[6] Holmes, V. P., D. Harris, K. Piorkowski, and G. Davidson, "Hawk: An Operating System
Kernel for a Real-Time Embedded Multiprocessor," Sandia National Labs Report, 1987.

[7] Ramamritham, K. and J. Stankovic, "Dynamic Task Scheduling in Distributed Hard
Real-Time Systems," IEEE Software, Vol. 1, No. 3, July 1984.

[8] Ramamritham, K., J. Stankovic, and W. Zhao, "Distributed Scheduling of Tasks With
Deadlines and Resource Requirements," submitted to IEEE Transactions on Computers,
Oct. 1988.

[9] Ready, J., "VRTX: A Real-Time Operating System for Embedded Microprocessor Ap-
plications," IEEE Micro, pp. 8-17, Aug. 1986.

[10] Schwan, K., W. Bo and P. Gopinathi "A High Performance, Object-Based Operating
System for Real-Time, Robotics Application," Proc. 1986 Real-Time Systems Sympo-
sium, Dec. 1986.

[11] Stankovic, J., K. Ramamritham, and S. Cheng, "Evaluation of a Bidding Algorithm for
Hard Real-Time Distributed Systems," IEEE Transactions on Computers, Vol. C-34,
No. 12, Dec. 1985.

[12] Stankovic, J. and K. Ramamritham, "The Design of the Spring Kernel," Proc. 1987
Real-Time Systems Symposium, Dec. 1987.

[13] Stankovic, J., "Misconceptions About Real-Time Computing," IEEE Computer, Vol. 21,
No. 10, Oct. 1988.

[14] Zhao, W., Ramamritham, K., and J. Stankovic, "Scheduling ']?asks with Resource Re-
quirements in Hard Real-Time Systems," IEEE Transactions on Software Engineering,
May 1987.

[15] Zhao, W., Ramamritham, K. and J. Stankovic, "Preemptive Scheduling Under Time
and Resource Constraints," IEEE Transactions on Computers, August 1987.

[16] Zhao, W. and K. Ramamritham, "Simple and Integrated Iteuristic Algorithms for
Scheduling Tasks with Time and Resource Constraints," Journal of Systems and Soft-
ware, 1987.

71

